Elected parties, by riding:
Elected parties, by riding:
42nd General Election: Official Voting Results (Voting Results by Electoral District)
ridings_results_2015_raw
## # A tibble: 338 x 13## Province `Electoral Dist⊠`Electoral Dist⊠Population `Electors/ĂlectâŠ## <chr> <chr> <dbl> <dbl> <dbl>## 1 Newfoun⊠Avalon 10001 81540 68487## 2 Newfoun⊠Bonavista--Buri⊠10002 76704 62462## 3 Newfoun⊠Coast of Bays--⊠10003 78092 64226## 4 Newfoun⊠Labrador 10004 26728 20045## 5 Newfoun⊠Long Range Moun⊠10005 87592 71918## 6 Newfoun⊠St. John's East⊠10006 81936 66304## 7 Newfoun⊠St. John's Sout⊠10007 81944 67596## 8 Prince ⊠Cardigan 11001 36005 28889## 9 Prince ⊠Charlottetown 11002 34562 28129## 10 Prince ⊠Egmont 11003 34598 27858## # ⊠with 328 more rows, and 8 more variables: `Polling Stations/Bureaux de## # scrutin` <dbl>, `Valid Ballots/Bulletins valides` <dbl>, `Percentage## # of Valid Ballots /Pourcentage des bulletins valides` <dbl>, `Rejected## # Ballots/Bulletins rejetĂ©s` <dbl>, `Percentage of Rejected Ballots## # /Pourcentage des bulletins rejetĂ©s` <dbl>, `Total Ballots Cast/Total## # des bulletins dĂ©posĂ©s` <dbl>, `Percentage of Voter Turnout/Pourcentage## # de la participation Ă©lectorale` <dbl>, `Elected Candidate/Candidat## # Ă©lu` <chr>
library(dplyr)ridings_results_2015 <- ridings_results_2015_raw %>% select( `Electoral District Name/Nom de circonscription`, `Elected Candidate/Candidat Ă©lu` )head(ridings_results_2015)
## # A tibble: 6 x 2## `Electoral District Name/Nom de circonscri⊠`Elected Candidate/Candidat âŠ## <chr> <chr> ## 1 Avalon McDonald, Ken Liberal/LibĂ©ral## 2 Bonavista--Burin--Trinity Foote, Judy M. Liberal/LibĂ©râŠ## 3 Coast of Bays--Central--Notre Dame Simms, Scott Liberal/LibĂ©ral ## 4 Labrador Jones, Yvonne Liberal/LibĂ©ral## 5 Long Range Mountains Hutchings, Gudie Liberal/LibâŠ## 6 St. John's East/St. John's-Est Whalen, Nick Liberal/LibĂ©ral
library(dplyr)ridings_results_2015 <- ridings_results_2015_raw %>% select( `Electoral District Name/Nom de circonscription`, `Elected Candidate/Candidat Ă©lu` )head(ridings_results_2015)
## # A tibble: 6 x 2## `Electoral District Name/Nom de circonscri⊠`Elected Candidate/Candidat âŠ## <chr> <chr> ## 1 Avalon McDonald, Ken Liberal/LibĂ©ral## 2 Bonavista--Burin--Trinity Foote, Judy M. Liberal/LibĂ©râŠ## 3 Coast of Bays--Central--Notre Dame Simms, Scott Liberal/LibĂ©ral ## 4 Labrador Jones, Yvonne Liberal/LibĂ©ral## 5 Long Range Mountains Hutchings, Gudie Liberal/LibâŠ## 6 St. John's East/St. John's-Est Whalen, Nick Liberal/LibĂ©ral
Riding name contains English and French. Elected party is contained within elected candidate field.
October 21, 2019 Federal Election Election Results
ridings_results_2019_raw
## # A tibble: 338 x 14## `Province/terri⊠`Electoral dist⊠`Candidate who ⊠`Political affiâŠ## <chr> <chr> <chr> <chr> ## 1 Newfoundland an⊠Avalon Kenneth McDonald Liberal ## 2 Newfoundland an⊠Bonavista--Buri⊠Churence Rogers Liberal ## 3 Newfoundland an⊠Coast of Bays--⊠Scott Simms Liberal ## 4 Newfoundland an⊠Labrador Yvonne Jones Liberal ## 5 Newfoundland an⊠Long Range Moun⊠Gudie Hutchings Liberal ## 6 Newfoundland an⊠St. John's East Jack Harris NDP ## 7 Newfoundland an⊠St. John's Sout⊠Seamus O'Regan Liberal ## 8 Prince Edward I⊠Cardigan Lawrence MacAul⊠Liberal ## 9 Prince Edward I⊠Charlottetown Sean Casey Liberal ## 10 Prince Edward I⊠Egmont Bobby Morrissey Liberal ## # ⊠with 328 more rows, and 10 more variables: `Number of votes## # cast` <dbl>, `Candidate who received the second-most votes` <chr>,## # `Political affiliation_1` <chr>, `Number of votes cast_1` <dbl>,## # `Total number of valid votes cast in the electoral district` <dbl>,## # `Variance between first and second place (number of votes)` <dbl>,## # `Variance (percentage)` <chr>, `Status of results (preliminary or## # validated)` <chr>, `Judicial recount requested or automatic` <chr>,## # X14 <lgl>
ridings_results_2019 <- ridings_results_2019_raw %>% select( `Electoral district`, `Political affiliation` )ridings_results_2019
## # A tibble: 338 x 2## `Electoral district` `Political affiliation`## <chr> <chr> ## 1 Avalon Liberal ## 2 Bonavista--Burin--Trinity Liberal ## 3 Coast of Bays--Central--Notre Dame Liberal ## 4 Labrador Liberal ## 5 Long Range Mountains Liberal ## 6 St. John's East NDP ## 7 St. John's South--Mount Pearl Liberal ## 8 Cardigan Liberal ## 9 Charlottetown Liberal ## 10 Egmont Liberal ## # ⊠with 328 more rows
ridings_results_2019 <- ridings_results_2019_raw %>% select( `Electoral district`, `Political affiliation` )ridings_results_2019
## # A tibble: 338 x 2## `Electoral district` `Political affiliation`## <chr> <chr> ## 1 Avalon Liberal ## 2 Bonavista--Burin--Trinity Liberal ## 3 Coast of Bays--Central--Notre Dame Liberal ## 4 Labrador Liberal ## 5 Long Range Mountains Liberal ## 6 St. John's East NDP ## 7 St. John's South--Mount Pearl Liberal ## 8 Cardigan Liberal ## 9 Charlottetown Liberal ## 10 Egmont Liberal ## # ⊠with 328 more rows
English riding name only, political party is available on its own.
2015 data: a list of ridings (English and French names together) and which official was elected (with their political affiliation in the same field)
2019 data: a list of ridings (English name only) and which political party was elected
2015 data: a list of ridings (English and French names together) and which official was elected (with their political affiliation in the same field)
2019 data: a list of ridings (English name only) and which political party was elected
A list of all ridings and which party won in 2015 and 2019
âŒïž Make the data easier to work with
âŒïž Make the data easier to work with
âŒïž Extract the English riding name from the 2015 data
âŒïž Make the data easier to work with
âŒïž Extract the English riding name from the 2015 data
âŒïž Ensure the ridings names from the two data sets match
âŒïž Make the data easier to work with
âŒïž Extract the English riding name from the 2015 data
âŒïž Ensure the ridings names from the two data sets match
âŒïž Extract the elected party from the 2015 elected official
âŒïž Make the data easier to work with
âŒïž Extract the English riding name from the 2015 data
âŒïž Ensure the ridings names from the two data sets match
âŒïž Extract the elected party from the 2015 elected official
âŒïž Combine the two data sets
names(ridings_results_2019)
## [1] "Electoral district" "Political affiliation"
names(ridings_results_2019)
## [1] "Electoral district" "Political affiliation"
ridings_results_2019 %>% select(Electoral district)
names(ridings_results_2019)
## [1] "Electoral district" "Political affiliation"
ridings_results_2019 %>% select(Electoral district)
## Error: <text>:2:20: unexpected symbol## 1: ridings_results_2019 %>%## 2: select(Electoral district## ^
names(ridings_results_2019)
## [1] "Electoral district" "Political affiliation"
ridings_results_2019 %>% select(Electoral district)
## Error: <text>:2:20: unexpected symbol## 1: ridings_results_2019 %>%## 2: select(Electoral district## ^
ridings_results_2019 %>% select(`Electoral district`)
names(ridings_results_2019)
## [1] "Electoral district" "Political affiliation"
ridings_results_2019 %>% select(Electoral district)
## Error: <text>:2:20: unexpected symbol## 1: ridings_results_2019 %>%## 2: select(Electoral district## ^
ridings_results_2019 %>% select(`Electoral district`)
## # A tibble: 338 x 1## `Electoral district` ## <chr> ## 1 Avalon ## 2 Bonavista--Burin--Trinity ## 3 Coast of Bays--Central--Notre Dame## 4 Labrador ## 5 Long Range Mountains ## 6 St. John's East ## 7 St. John's South--Mount Pearl ## 8 Cardigan ## 9 Charlottetown ## 10 Egmont ## # ⊠with 328 more rows
The janitor
package is totally đŁ for cleaning data.
library(janitor)ridings_results_2015 <- ridings_results_2015 %>% clean_names()ridings_results_2019 <- ridings_results_2019 %>% clean_names()names(ridings_results_2019)
The janitor
package is totally đŁ for cleaning data.
library(janitor)ridings_results_2015 <- ridings_results_2015 %>% clean_names()ridings_results_2019 <- ridings_results_2019 %>% clean_names()names(ridings_results_2019)
## [1] "electoral_district" "political_affiliation"
The janitor
package is totally đŁ for cleaning data.
library(janitor)ridings_results_2015 <- ridings_results_2015 %>% clean_names()ridings_results_2019 <- ridings_results_2019 %>% clean_names()names(ridings_results_2019)
## [1] "electoral_district" "political_affiliation"
â Make the data easier to work with
English riding name is everything before the first "/" (if there is one)
English riding name is everything before the first "/" (if there is one)
library(tidyr)ridings_results_2015 <- ridings_results_2015 %>% separate(electoral_district_name_nom_de_circonscription, into = "riding", sep = "/")ridings_results_2015
English riding name is everything before the first "/" (if there is one)
library(tidyr)ridings_results_2015 <- ridings_results_2015 %>% separate(electoral_district_name_nom_de_circonscription, into = "riding", sep = "/")ridings_results_2015
## # A tibble: 338 x 2## riding elected_candidate_candidat_elu ## <chr> <chr> ## 1 Avalon McDonald, Ken Liberal/Libéral ## 2 Bonavista--Burin--Trinity Foote, Judy M. Liberal/Libéral ## 3 Coast of Bays--Central--Notre Dame Simms, Scott Liberal/Libéral ## 4 Labrador Jones, Yvonne Liberal/Libéral ## 5 Long Range Mountains Hutchings, Gudie Liberal/Libéral ## 6 St. John's East Whalen, Nick Liberal/Libéral ## 7 St. John's South--Mount Pearl O'Regan, Seamus Liberal/Libéral ## 8 Cardigan MacAulay, Lawrence Liberal/Libéral## 9 Charlottetown Casey, Sean Liberal/Libéral ## 10 Egmont Morrissey, Bobby Liberal/Libéral ## # ⊠with 328 more rows
English riding name is everything before the first "/" (if there is one)
library(tidyr)ridings_results_2015 <- ridings_results_2015 %>% separate(electoral_district_name_nom_de_circonscription, into = "riding", sep = "/")ridings_results_2015
## # A tibble: 338 x 2## riding elected_candidate_candidat_elu ## <chr> <chr> ## 1 Avalon McDonald, Ken Liberal/Libéral ## 2 Bonavista--Burin--Trinity Foote, Judy M. Liberal/Libéral ## 3 Coast of Bays--Central--Notre Dame Simms, Scott Liberal/Libéral ## 4 Labrador Jones, Yvonne Liberal/Libéral ## 5 Long Range Mountains Hutchings, Gudie Liberal/Libéral ## 6 St. John's East Whalen, Nick Liberal/Libéral ## 7 St. John's South--Mount Pearl O'Regan, Seamus Liberal/Libéral ## 8 Cardigan MacAulay, Lawrence Liberal/Libéral## 9 Charlottetown Casey, Sean Liberal/Libéral ## 10 Egmont Morrissey, Bobby Liberal/Libéral ## # ⊠with 328 more rows
â Extract the English riding name from the 2015 data
ridings_results_2015 <- ridings_results_2015 %>% arrange(riding)ridings_results_2019 <- ridings_results_2019 %>% rename(riding = electoral_district) %>% arrange(riding)all(ridings_results_2015[["riding"]] == ridings_results_2019[["riding"]])
ridings_results_2015 <- ridings_results_2015 %>% arrange(riding)ridings_results_2019 <- ridings_results_2019 %>% rename(riding = electoral_district) %>% arrange(riding)all(ridings_results_2015[["riding"]] == ridings_results_2019[["riding"]])
## [1] FALSE
ridings_results_2015 <- ridings_results_2015 %>% arrange(riding)ridings_results_2019 <- ridings_results_2019 %>% rename(riding = electoral_district) %>% arrange(riding)all(ridings_results_2015[["riding"]] == ridings_results_2019[["riding"]])
## [1] FALSE
ridings_results_2015 %>% select(riding_2015 = riding) %>% bind_cols(ridings_results_2019 %>% select(riding_2019 = riding)) %>% filter(riding_2015 != riding_2019)
## # A tibble: 3 x 2## riding_2015 riding_2019 ## <chr> <chr> ## 1 Beauport--CĂŽte-de-BeauprĂ©--Ăle d'Orl⊠Beauport--Limoilou ## 2 Beauport--Limoilou Beauport-CĂŽte-de-BeauprĂ©-Ăle d'OrlâŠ## 3 Leeds--Grenville--Thousand Islands a⊠Leeds-Grenville-Thousand Islands aâŠ
ridings_results_2015 <- ridings_results_2015 %>% arrange(riding)ridings_results_2019 <- ridings_results_2019 %>% rename(riding = electoral_district) %>% arrange(riding)all(ridings_results_2015[["riding"]] == ridings_results_2019[["riding"]])
## [1] FALSE
ridings_results_2015 %>% select(riding_2015 = riding) %>% bind_cols(ridings_results_2019 %>% select(riding_2019 = riding)) %>% filter(riding_2015 != riding_2019)
## # A tibble: 3 x 2## riding_2015 riding_2019 ## <chr> <chr> ## 1 Beauport--CĂŽte-de-BeauprĂ©--Ăle d'Orl⊠Beauport--Limoilou ## 2 Beauport--Limoilou Beauport-CĂŽte-de-BeauprĂ©-Ăle d'OrlâŠ## 3 Leeds--Grenville--Thousand Islands a⊠Leeds-Grenville-Thousand Islands aâŠ
â Ensure the ridings names from the two data sets match
Replace all "--" with "-"
Replace all "--" with "-"
library(stringr)ridings_results_2015 <- ridings_results_2015 %>% mutate(riding = str_replace_all(riding, "--", "-")) %>% arrange(riding)ridings_results_2019 <- ridings_results_2019 %>% mutate(riding = str_replace_all(riding, "--", "-")) %>% arrange(riding)
Replace all "--" with "-"
library(stringr)ridings_results_2015 <- ridings_results_2015 %>% mutate(riding = str_replace_all(riding, "--", "-")) %>% arrange(riding)ridings_results_2019 <- ridings_results_2019 %>% mutate(riding = str_replace_all(riding, "--", "-")) %>% arrange(riding)
all(ridings_results_2015[["riding"]] == ridings_results_2019[["riding"]])
## [1] TRUE
Replace all "--" with "-"
library(stringr)ridings_results_2015 <- ridings_results_2015 %>% mutate(riding = str_replace_all(riding, "--", "-")) %>% arrange(riding)ridings_results_2019 <- ridings_results_2019 %>% mutate(riding = str_replace_all(riding, "--", "-")) %>% arrange(riding)
all(ridings_results_2015[["riding"]] == ridings_results_2019[["riding"]])
## [1] TRUE
â Ensure the ridings names from the two data sets match
ridings_results_2015 %>% select(elected_candidate_candidat_elu)
## # A tibble: 338 x 1## elected_candidate_candidat_elu ## <chr> ## 1 Fast, Ed Conservative/Conservateur ## 2 Saganash, Romeo NDP-New Democratic Party/NPD-Nouveau Parti démocratique ## 3 Moore, Christine NDP-New Democratic Party/NPD-Nouveau Parti démocratique## 4 Cormier, Serge Liberal/Libéral ## 5 Joly, Mélanie Liberal/Libéral ## 6 Holland, Mark Liberal/Libéral ## 7 Iacono, Angelo Liberal/Libéral ## 8 Hughes, Carol NDP-New Democratic Party/NPD-Nouveau Parti démocratique ## 9 Lauzon, Stéphane Liberal/Libéral ## 10 Alleslev, Leona Liberal/Libéral ## # ⊠with 328 more rows
Getting the party name in French would be easy - everything after the slash
ridings_results_2015 %>% separate( elected_candidate_candidat_elu, into = c("candidate_and_english_party", "french_party"), sep = "/" ) %>% count(french_party)
Getting the party name in French would be easy - everything after the slash
ridings_results_2015 %>% separate( elected_candidate_candidat_elu, into = c("candidate_and_english_party", "french_party"), sep = "/" ) %>% count(french_party)
## # A tibble: 5 x 2## french_party n## <chr> <int>## 1 Bloc Québécois 10## 2 Conservateur 99## 3 Libéral 184## 4 NPD-Nouveau Parti démocratique 44## 5 Parti Vert 1
Getting the party name in French would be easy - everything after the slash
ridings_results_2015 %>% separate( elected_candidate_candidat_elu, into = c("candidate_and_english_party", "french_party"), sep = "/" ) %>% count(french_party)
## # A tibble: 5 x 2## french_party n## <chr> <int>## 1 Bloc Québécois 10## 2 Conservateur 99## 3 Libéral 184## 4 NPD-Nouveau Parti démocratique 44## 5 Parti Vert 1
Not as easy in English - party names are not just the word before the slash.
I'm not above manual recoding!
ridings_results_2015 <- ridings_results_2015 %>% mutate(party = case_when( str_detect(elected_candidate_candidat_elu, "Conservative") ~ "Conservative", str_detect(elected_candidate_candidat_elu, "NDP") ~ "NDP", str_detect(elected_candidate_candidat_elu, "Liberal") ~ "Liberal", str_detect(elected_candidate_candidat_elu, "Bloc Québécois") ~ "Bloc Québécois", str_detect(elected_candidate_candidat_elu, "Green Party") ~ "Green Party" )) %>% select(-elected_candidate_candidat_elu)head(ridings_results_2015)
I'm not above manual recoding!
ridings_results_2015 <- ridings_results_2015 %>% mutate(party = case_when( str_detect(elected_candidate_candidat_elu, "Conservative") ~ "Conservative", str_detect(elected_candidate_candidat_elu, "NDP") ~ "NDP", str_detect(elected_candidate_candidat_elu, "Liberal") ~ "Liberal", str_detect(elected_candidate_candidat_elu, "Bloc Québécois") ~ "Bloc Québécois", str_detect(elected_candidate_candidat_elu, "Green Party") ~ "Green Party" )) %>% select(-elected_candidate_candidat_elu)head(ridings_results_2015)
## # A tibble: 6 x 2## riding party ## <chr> <chr> ## 1 Abbotsford Conservative## 2 Abitibi-Baie-James-Nunavik-Eeyou NDP ## 3 Abitibi-TĂ©miscamingue NDP ## 4 Acadie-Bathurst Liberal ## 5 Ahuntsic-Cartierville Liberal ## 6 Ajax Liberal
I'm not above manual recoding!
ridings_results_2015 <- ridings_results_2015 %>% mutate(party = case_when( str_detect(elected_candidate_candidat_elu, "Conservative") ~ "Conservative", str_detect(elected_candidate_candidat_elu, "NDP") ~ "NDP", str_detect(elected_candidate_candidat_elu, "Liberal") ~ "Liberal", str_detect(elected_candidate_candidat_elu, "Bloc Québécois") ~ "Bloc Québécois", str_detect(elected_candidate_candidat_elu, "Green Party") ~ "Green Party" )) %>% select(-elected_candidate_candidat_elu)head(ridings_results_2015)
## # A tibble: 6 x 2## riding party ## <chr> <chr> ## 1 Abbotsford Conservative## 2 Abitibi-Baie-James-Nunavik-Eeyou NDP ## 3 Abitibi-TĂ©miscamingue NDP ## 4 Acadie-Bathurst Liberal ## 5 Ahuntsic-Cartierville Liberal ## 6 Ajax Liberal
â Extract the elected party from the 2015 elected official
ridings_results_2019 <- ridings_results_2019 %>% rename(party = political_affiliation)riding_results <- ridings_results_2015 %>% full_join(ridings_results_2019, by = "riding", suffix = c("_2015", "_2019") )head(riding_results)
ridings_results_2019 <- ridings_results_2019 %>% rename(party = political_affiliation)riding_results <- ridings_results_2015 %>% full_join(ridings_results_2019, by = "riding", suffix = c("_2015", "_2019") )head(riding_results)
## # A tibble: 6 x 3## riding party_2015 party_2019 ## <chr> <chr> <chr> ## 1 Abbotsford Conservative Conservative ## 2 Abitibi-Baie-James-Nunavik-Eeyou NDP Bloc Québécois## 3 Abitibi-Témiscamingue NDP Bloc Québécois## 4 Acadie-Bathurst Liberal Liberal ## 5 Ahuntsic-Cartierville Liberal Liberal ## 6 Ajax Liberal Liberal
ridings_results_2019 <- ridings_results_2019 %>% rename(party = political_affiliation)riding_results <- ridings_results_2015 %>% full_join(ridings_results_2019, by = "riding", suffix = c("_2015", "_2019") )head(riding_results)
## # A tibble: 6 x 3## riding party_2015 party_2019 ## <chr> <chr> <chr> ## 1 Abbotsford Conservative Conservative ## 2 Abitibi-Baie-James-Nunavik-Eeyou NDP Bloc Québécois## 3 Abitibi-Témiscamingue NDP Bloc Québécois## 4 Acadie-Bathurst Liberal Liberal ## 5 Ahuntsic-Cartierville Liberal Liberal ## 6 Ajax Liberal Liberal
â Combine the two data sets
head(riding_results)
## # A tibble: 6 x 3## riding party_2015 party_2019 ## <chr> <chr> <chr> ## 1 Abbotsford Conservative Conservative ## 2 Abitibi-Baie-James-Nunavik-Eeyou NDP Bloc Québécois## 3 Abitibi-Témiscamingue NDP Bloc Québécois## 4 Acadie-Bathurst Liberal Liberal ## 5 Ahuntsic-Cartierville Liberal Liberal ## 6 Ajax Liberal Liberal
â Make the data easier to work with
â Extract the English riding name from the 2015 data
â Ensure the ridings names from the two data sets match
â Extract the elected party from the 2015 elected official
â Combine the two data sets
different_parties <- riding_results %>% filter(party_2015 != party_2019)different_parties
different_parties <- riding_results %>% filter(party_2015 != party_2019)different_parties
## # A tibble: 62 x 3## riding party_2015 party_2019 ## <chr> <chr> <chr> ## 1 Abitibi-Baie-James-Nunavik-Eeyou NDP Bloc QuĂ©bĂ©coâŠ## 2 Abitibi-TĂ©miscamingue NDP Bloc QuĂ©bĂ©coâŠ## 3 Aurora-Oak Ridges-Richmond Hill Liberal Conservative ## 4 Avignon-La Mitis-Matane-MatapĂ©dia Liberal Bloc QuĂ©bĂ©coâŠ## 5 Beauport-CĂŽte-de-BeauprĂ©-Ăle d'OrlĂ©ans-Charl⊠Conservative Bloc QuĂ©bĂ©coâŠ## 6 Beauport-Limoilou Conservative Bloc QuĂ©bĂ©coâŠ## 7 Beloeil-Chambly NDP Bloc QuĂ©bĂ©coâŠ## 8 Berthier-MaskinongĂ© NDP Bloc QuĂ©bĂ©coâŠ## 9 Calgary Centre Liberal Conservative ## 10 Calgary Skyview Liberal Conservative ## # ⊠with 52 more rows
library(glue)different_parties <- different_parties %>% mutate(party_change = glue("{party_2015} to {party_2019}"))different_parties["party_change"]
library(glue)different_parties <- different_parties %>% mutate(party_change = glue("{party_2015} to {party_2019}"))different_parties["party_change"]
## # A tibble: 62 x 1## party_change ## <glue> ## 1 NDP to Bloc Québécois ## 2 NDP to Bloc Québécois ## 3 Liberal to Conservative ## 4 Liberal to Bloc Québécois ## 5 Conservative to Bloc Québécois## 6 Conservative to Bloc Québécois## 7 NDP to Bloc Québécois ## 8 NDP to Bloc Québécois ## 9 Liberal to Conservative ## 10 Liberal to Conservative ## # ⊠with 52 more rows
different_parties %>% tabyl(party_change) %>% adorn_pct_formatting() %>% arrange(-n)
different_parties %>% tabyl(party_change) %>% adorn_pct_formatting() %>% arrange(-n)
## party_change n percent## 1 Liberal to Conservative 21 33.9%## 2 NDP to Bloc Québécois 11 17.7%## 3 Liberal to Bloc Québécois 8 12.9%## 4 NDP to Conservative 6 9.7%## 5 NDP to Liberal 5 8.1%## 6 Conservative to Bloc Québécois 3 4.8%## 7 Liberal to NDP 3 4.8%## 8 Conservative to Liberal 2 3.2%## 9 Liberal to Green Party 1 1.6%## 10 Liberal to Independent 1 1.6%## 11 NDP to Green Party 1 1.6%
Clean your column names
Clean your column names
Optimize for human readability
Clean your column names
Optimize for human readability
If there's an easy way, take it (no one is handing out medals for figuring out regular expressions)
Clean your column names
Optimize for human readability
If there's an easy way, take it (no one is handing out medals for figuring out regular expressions)
Consider alternative methods (separate
versus regex)
Clean your column names
Optimize for human readability
If there's an easy way, take it (no one is handing out medals for figuring out regular expressions)
Consider alternative methods (separate
versus regex)
Use packages that already exist. Keep up with what's out there (rweekly.org)
Keyboard shortcuts
â, â, Pg Up, k | Go to previous slide |
â, â, Pg Dn, Space, j | Go to next slide |
Home | Go to first slide |
End | Go to last slide |
Number + Return | Go to specific slide |
b / m / f | Toggle blackout / mirrored / fullscreen mode |
c | Clone slideshow |
p | Toggle presenter mode |
t | Restart the presentation timer |
?, h | Toggle this help |
Esc | Back to slideshow |